enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...

  3. Ono's inequality - Wikipedia

    en.wikipedia.org/wiki/Ono's_inequality

    This inequality fails for general triangles (to which Ono's original conjecture applied), as shown by the counterexample =, =, =, = / The inequality holds with equality in the case of an equilateral triangle , in which up to similarity we have sides 1 , 1 , 1 {\displaystyle 1,1,1} and area 3 / 4. {\displaystyle {\sqrt {3}}/4.}

  4. Hadwiger–Finsler inequality - Wikipedia

    en.wikipedia.org/wiki/Hadwiger–Finsler_inequality

    Hadwiger–Finsler inequality is actually equivalent to Weitzenböck's inequality. Applying (W) to the circummidarc triangle gives (HF) [1] Weitzenböck's inequality can also be proved using Heron's formula, by which route it can be seen that equality holds in (W) if and only if the triangle is an equilateral triangle, i.e. a = b = c.

  5. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.

  6. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  7. Erdős–Mordell inequality - Wikipedia

    en.wikipedia.org/wiki/Erdős–Mordell_inequality

    Subsequent simpler proofs were then found by Kazarinoff (1957), Bankoff (1958), and Alsina & Nelsen (2007). Barrow's inequality is a strengthened version of the Erdős–Mordell inequality in which the distances from P to the sides are replaced by the distances from P to the points where the angle bisectors of ∠APB, ∠BPC, and ∠CPA cross ...

  8. Barrow's inequality - Wikipedia

    en.wikipedia.org/wiki/Barrow's_inequality

    Barrow's proof of this inequality was published in 1937, as his solution to a problem posed in the American Mathematical Monthly of proving the Erdős–Mordell inequality. [1] This result was named "Barrow's inequality" as early as 1961. [4] A simpler proof was later given by Louis J. Mordell. [5]

  9. Finsler–Hadwiger theorem - Wikipedia

    en.wikipedia.org/wiki/Finsler–Hadwiger_theorem

    The Finsler–Hadwiger theorem is statement in Euclidean plane geometry that describes a third square derived from any two squares that share a vertex. The theorem is named after Paul Finsler and Hugo Hadwiger , who published it in 1937 as part of the same paper in which they published the Hadwiger–Finsler inequality relating the side lengths ...