enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Space-time adaptive processing - Wikipedia

    en.wikipedia.org/wiki/Space-time_adaptive_processing

    This is what requires STAP to be an adaptive technique. Note that even in this idealized example, in general, we must steer over the 2-D angle-Doppler plane at discrete points to detect potential targets (moving the location of the 2-D sinc main lobe shown in the figure), and do so for each of the range bins in our system.

  3. Range ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Range_ambiguity_resolution

    Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .

  4. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  5. Pulse-Doppler signal processing - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_signal...

    Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common.

  6. Imaging radar - Wikipedia

    en.wikipedia.org/wiki/Imaging_radar

    SARs produce a two-dimensional (2-D) image. One dimension in the image is called range and is a measure of the "line-of-sight" distance from the radar to the object. Range is determined by measuring the time from transmission of a pulse to receiving the echo from a target. Also, range resolution is determined by the transmitted pulse width.

  7. Synthetic-aperture radar - Wikipedia

    en.wikipedia.org/wiki/Synthetic-aperture_radar

    In the cross-range coordinate, the similar resolution is mainly proportional to the bandwidth of the Doppler shift of the signal returns within the beamwidth. Since Doppler frequency depends on the angle of the scattering point's direction from the broadside direction, the Doppler bandwidth available within the beamwidth is the same at all ranges.

  8. Phase-comparison monopulse - Wikipedia

    en.wikipedia.org/wiki/Phase-Comparison_Monopulse

    All of the typical measurements that a non-monopulse system make are done using the sum channel, e.g., range, Doppler, and angle. However, the angle measurement is limited in that the target could be anywhere within the beam width of the sum beam, and therefore the system can only assume that the beam pointing direction is the same as the ...

  9. Radar signal characteristics - Wikipedia

    en.wikipedia.org/wiki/Radar_signal_characteristics

    Regardless, radars that employ the technique are universally coherent, with a very stable radio frequency, and the pulse packets may also be used to make measurements of the Doppler shift (a velocity-dependent modification of the apparent radio frequency), especially when the PRFs are in the hundreds-of-kilohertz range. Radars exploiting ...