enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Free neutrons do not directly ionize atoms, but they do indirectly cause ionizing radiation, so they can be a biological hazard, depending on dose. A small natural "neutron background" flux of free neutrons exists on Earth, caused by cosmic ray showers, and by the natural radioactivity of spontaneously fissionable elements in the Earth's crust.

  3. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Neutrons do not ionize atoms in the same way that charged particles such as protons and electrons do (by the excitation of an electron), because neutrons have no charge. It is through their absorption by nuclei which then become unstable that they cause ionization. Hence, neutrons are said to be "indirectly ionizing".

  4. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...

  5. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons (symbol N) and the other represents the number of protons (atomic number, symbol Z) in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element.

  6. Karlsruhe Nuclide Chart - Wikipedia

    en.wikipedia.org/wiki/Karlsruhe_Nuclide_Chart

    The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...

  7. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    The proton carries a positive net charge, and the neutron carries a zero net charge; the proton's mass is only about 0.13% less than the neutron's. Thus, they can be viewed as two states of the same nucleon, and together form an isospin doublet (I = ⁠ 1 / 2 ⁠). In isospin space, neutrons can be transformed into protons and conversely by SU ...

  8. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  9. Free neutron decay - Wikipedia

    en.wikipedia.org/wiki/Free_neutron_decay

    In this type of free neutron decay, in essence all of the neutron decay energy is carried off by the antineutrino (the other "body"). The transformation of a free proton to a neutron (plus a positron and a neutrino) is energetically impossible, since a free neutron has a greater mass than a free proton. However, see proton decay.