Search results
Results from the WOW.Com Content Network
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
For example, if there are 10 grams of salt (the solute) dissolved in 1 litre of water (the solvent), this solution has a certain salt concentration . If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl).
The fugacity capacity constant (Z) is used to help describe the concentration of a chemical in a system (usually in mol/m 3 Pa). Hemond and Hechner-Levy (2000) describe how to utilize the fugacity capacity to calculate the concentration of a chemical in a system. Depending on the chemical, fugacity capacity varies.
Making a saline water solution by dissolving table salt in water.The salt is the solute and the water the solvent. In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes.
The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and solvents in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration. Dilution is reduction of concentration, e.g. by adding
For a dilute solution, the concentration of the solute is approximately proportional to its mole fraction x, and Henry's law can be written as =. This can be compared with Raoult's law: =, where p* is the vapor pressure of the pure component.
The concentration of a vapor in contact with its liquid, especially at equilibrium, is often expressed in terms of vapor pressure, which will be a partial pressure (a part of the total gas pressure) if any other gas(es) are present with the vapor. The equilibrium vapor pressure of a liquid is in general strongly dependent on temperature. At ...
An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. [1] The enthalpy of mixing is zero [ 2 ] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes.