Search results
Results from the WOW.Com Content Network
A measure of statistical dispersion is a nonnegative real number that is zero if all the data are the same and increases as the data become more diverse. Most measures of dispersion have the same units as the quantity being measured. In other words, if the measurements are in metres or seconds, so is the measure of dispersion.
a measure of location, or central tendency, such as the arithmetic mean; a measure of statistical dispersion like the standard mean absolute deviation; a measure of the shape of the distribution like skewness or kurtosis; if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient
In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter, which determines the "location" or shift of the distribution.In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:
In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution. [1] Colloquially, measures of central tendency are often called averages. The term central tendency dates from the late 1920s. [2] The most common measures of central tendency are the arithmetic mean, the median, and ...
The following shows how to implement a location–scale family in a statistical package or programming environment where only functions for the "standard" version of a distribution are available. It is designed for R but should generalize to any language and library.
The measures of statistical dispersion derived from absolute deviation characterize various measures of central tendency as minimizing dispersion: The median is the measure of central tendency most associated with the absolute deviation. Some location parameters can be compared as follows: L 2 norm statistics: the mean minimizes the mean ...
The median can be used as a measure of location when one attaches reduced importance to extreme values, typically because a distribution is skewed, extreme values are not known, or outliers are untrustworthy, i.e., may be measurement or transcription errors. For example, consider the multiset. 1, 2, 2, 2, 3, 14.
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...