Search results
Results from the WOW.Com Content Network
The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. [4] [1] It involves a proton-exchange membrane. Electrolysis of water is an important technology for the production of hydrogen to be used as an energy carrier. With fast ...
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
Both of these mechanisms can be seen in industrial practices at the cathode side of the electrolyzer where hydrogen evolution occurs. In acidic conditions, it is referred to as proton exchange membrane electrolysis or PEM, while in alkaline conditions it is referred to simply as alkaline electrolysis. Historically, alkaline electrolysis has ...
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
By 1996 he produced a 50-watt prototype single proton-exchange membrane cell which operated for 1,700 ten-minute charge-discharge cycles, and degradation was less than a few percent at the highest current densities. A rated power of 18.5 kW [2] URFC was installed in the Helios and was tested on-board during test flights in 2003. The aircraft ...
As a proton conductor, BCZYZn05 can be used throughout the cell without inducing parasitic electronic leakage while providing a supportive backbone throughout the cell. Using nano-indentation , the use of BCZYZn05 was found to increase the hardness of the fuel cell components while necessary electrochemical reactivity and conductivity.
It typically consists of an anode, cathode, and two ion exchange membranes. This configuration allows for efficient proton conduction and effective gas diffusion, making it suitable for various applications, including fuel cell vehicles and portable power systems. Research has shown that 5-layer MEAs can provide improved performance under ...