enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This solution closely resembles that of standard linear regression, with an extra term . If the assumptions of OLS regression hold, the solution w = ( X T X ) − 1 X T y {\displaystyle w=\left(X^{\mathsf {T}}X\right)^{-1}X^{\mathsf {T}}y} , with λ = 0 {\displaystyle \lambda =0} , is an unbiased estimator, and is the minimum-variance linear ...

  3. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS can be used for ℓ 1 minimization and smoothed ℓ p minimization, p < 1, in compressed sensing problems. It has been proved that the algorithm has a linear rate of convergence for ℓ 1 norm and superlinear for ℓ t with t < 1, under the restricted isometry property, which is generally a sufficient condition for sparse solutions.

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  6. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Download QR code; Print/export ... The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due to its relative ...

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  8. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model.It is used when there is a non-zero amount of correlation between the residuals in the regression model.

  9. Least trimmed squares - Wikipedia

    en.wikipedia.org/wiki/Least_trimmed_squares

    Download QR code; Print/export ... "An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints".