Search results
Results from the WOW.Com Content Network
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
The characteristic function of a real-valued random variable always exists, since it is an integral of a bounded continuous function over a space whose measure is finite. A characteristic function is uniformly continuous on the entire space. It is non-vanishing in a region around zero: φ(0) = 1. It is bounded: | φ(t) | ≤ 1.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In mathematics, in particular in measure theory, there are different notions of distribution function and it is important to understand the context in which they are used (properties of functions, or properties of measures). Distribution functions (in the sense of measure theory) are a generalization of distribution functions (in the sense of ...
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
As the number of discrete events increases, the function begins to resemble a normal distribution. Comparison of probability density functions, () for the sum of fair 6-sided dice to show their convergence to a normal distribution with increasing , in accordance to the central limit theorem. In the bottom-right graph, smoothed profiles of the ...
On the other hand, a scoring function [2] provides a summary measure for the evaluation of point predictions, i.e. one predicts a property or functional (), like the expectation or the median. The average logarithmic score of 10 points i.i.d. sampled from a standard normal distribution (blue histogram), evaluated on a variety of distributions ...