enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Then their respective planes are perpendicular to vectors a and b, and the direction of L must be perpendicular to both. Hence we may set d = a × b, which is nonzero because a, b are neither zero nor parallel (the planes being distinct and intersecting). If point x satisfies both plane equations, then it also satisfies the linear combination

  3. Screw axis - Wikipedia

    en.wikipedia.org/wiki/Screw_axis

    A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis.

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.

  5. Axonometric projection - Wikipedia

    en.wikipedia.org/wiki/Axonometric_projection

    Classification of Axonometric projection and some 3D projections "Axonometry" means "to measure along the axes". In German literature, axonometry is based on Pohlke's theorem, such that the scope of axonometric projection could encompass every type of parallel projection, including not only orthographic projection (and multiview projection), but also oblique projection.

  6. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [8] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...

  7. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    The Earth showing its axis and plane of rotation, both inclined relative to the plane and perpendicular of Earth's orbit Another example is the Earth's rotation . The axis of rotation is the line joining the North Pole and South Pole and the plane of rotation is the plane through the equator between the Northern and Southern Hemispheres.

  8. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.

  9. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.