enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Soil microbiology - Wikipedia

    en.wikipedia.org/wiki/Soil_Microbiology

    These bacteria could fix nitrogen, in time multiplied, and as a result released oxygen into the atmosphere. [2] [3] This led to more advanced microorganisms, [4] [5] which are important because they affect soil structure and fertility. Soil microorganisms can be classified as bacteria, actinomycetes, fungi, algae and protozoa. Each of these ...

  3. Winogradsky column - Wikipedia

    en.wikipedia.org/wiki/Winogradsky_column

    This picture depicts the initial appearance of three different Winogradsky columns. They are soil and water samples from a river, the later two columns have been modified with phosphate, nitrate, sulfur and oxygen additives. These additions promote the growth of various bacteria specific to the anaerobic and aerobic regions of the column.

  4. Obligate anaerobe - Wikipedia

    en.wikipedia.org/wiki/Obligate_anaerobe

    Obligate anaerobes are found in oxygen-free environments such as the intestinal tracts of animals, the deep ocean, still waters, landfills, in deep sediments of soil. [9] Examples of obligately anaerobic bacterial genera include Actinomyces , Bacteroides , Clostridium , Fusobacterium , Peptostreptococcus , Porphyromonas , Prevotella ...

  5. Iron-oxidizing bacteria - Wikipedia

    en.wikipedia.org/wiki/Iron-oxidizing_bacteria

    The anoxygenic phototrophic iron oxidation was the first anaerobic metabolism to be described within the iron anaerobic oxidation metabolism. The photoferrotrophic bacteria use Fe 2+ as electron donor and the energy from light to assimilate CO 2 into biomass through the Calvin Benson-Bassam cycle (or rTCA cycle) in a neutrophilic environment (pH 5.5-7.2), producing Fe 3+ oxides as a waste ...

  6. Facultative anaerobic organism - Wikipedia

    en.wikipedia.org/wiki/Facultative_anaerobic_organism

    The ability of facultative anaerobic pathogens to survive without oxygen is important since their infection is shown to reduce oxygen levels in their host's gut tissue. [13] Moreover, the ability of facultative anaerobes to limit oxygen levels at infection sites is beneficial to them and other bacteria, as dioxygen can form reactive oxygen ...

  7. Obligate aerobe - Wikipedia

    en.wikipedia.org/wiki/Obligate_aerobe

    A unique obligate aerobe is Streptomyces coelicolor which is gram-positive, soil-dwelling, and belongs to the phylum Actinomycetota. [7] It is unique because the genome of this obligate aerobe encodes numerous enzymes with functions that are usually attributed to anaerobic metabolism in facultatively and strictly anaerobic bacteria .

  8. Soil biology - Wikipedia

    en.wikipedia.org/wiki/Soil_biology

    Bacteria live in soil water, including the film of moisture surrounding soil particles, and some are able to swim by means of flagella. The majority of the beneficial soil-dwelling bacteria need oxygen (and are thus termed aerobic bacteria), whilst those that do not require air are referred to as anaerobic , and tend to cause putrefaction of ...

  9. Azotobacter - Wikipedia

    en.wikipedia.org/wiki/Azotobacter

    Bacteria of the genus Azotobacter are also known to form intracellular inclusions of polyhydroxyalkanoates under certain environmental conditions (e.g. lack of elements such as phosphorus, nitrogen, or oxygen combined with an excessive supply of carbon sources).