Search results
Results from the WOW.Com Content Network
Ronald Fisher in 1913. Genetic variance is a concept outlined by the English biologist and statistician Ronald Fisher in his fundamental theorem of natural selection.In his 1930 book The Genetical Theory of Natural Selection, Fisher postulates that the rate of change of biological fitness can be calculated by the genetic variance of the fitness itself. [1]
Genetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype , or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype ."
Fisher's fundamental theorem of natural selection is an idea about genetic variance [1] [2] in population genetics developed by the statistician and evolutionary biologist Ronald Fisher. The proper way of applying the abstract mathematics of the theorem to actual biology has been a matter of some debate, however, it is a true theorem.
This comparison of genetic variability within and between populations is frequently used in applied population genetics. The values range from 0 to 1. A zero value implies complete panmixia; that is, that the two populations are interbreeding freely. A value of one implies that all genetic variation is explained by the population structure, and ...
Nucleotide diversity is a measure of genetic variation. It is usually associated with other statistical measures of population diversity, and is similar to expected heterozygosity . This statistic may be used to monitor diversity within or between ecological populations, to examine the genetic variation in crops and related species, [ 3 ] or to ...
Falconer's formula is a mathematical formula that is used in twin studies to estimate the relative contribution of genetic vs. environmental factors to variation in a particular trait (that is, the heritability of the trait) based on the difference between twin correlations. [2]
Genetic variation in populations can be analyzed and quantified by the frequency of alleles. Two fundamental calculations are central to population genetics : allele frequencies and genotype frequencies. [ 1 ]
Genetic variation can be identified at many levels. Identifying genetic variation is possible from observations of phenotypic variation in either quantitative traits (traits that vary continuously and are coded for by many genes, e.g., leg length in dogs) or discrete traits (traits that fall into discrete categories and are coded for by one or a few genes, e.g., white, pink, or red petal color ...