Search results
Results from the WOW.Com Content Network
In nuclear fission events the nuclei may break into any combination of lighter nuclei, but the most common event is not fission to equal mass nuclei of about mass 120; the most common event (depending on isotope and process) is a slightly unequal fission in which one daughter nucleus has a mass of about 90 to 100 daltons and the other the ...
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...
Nuclear fission is the reverse process to fusion. For nuclei heavier than nickel-62 the binding energy per nucleon decreases with the mass number. It is therefore possible for energy to be released if a heavy nucleus breaks apart into two lighter ones. The process of alpha decay is in essence a special type of spontaneous nuclear fission. It is ...
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
The study of proton emission has aided the understanding of nuclear deformation, masses and structure, and it is an example of quantum tunneling. Two examples of nuclides that emit neutrons are beryllium-13 (mean life 2.7 × 10 −21 s) and helium-5 (7 × 10 −22 s). Since only a neutron is lost in this process, the atom does not gain or lose ...
Fission product: strongest known "nuclear poison" (neutron-absorber), with a major effect on nuclear reactor operation. Caesium-137: 55: 82: 30.2 y: β −: 1176 Fission product: other major medium-lived fission product of concern Gadolinium-153: 64: 89: 240 d: EC: Synthetic: Calibrating nuclear equipment, bone density screening Bismuth-209: 83 ...
These neutrons can then go on to produce other nuclides via neutron-induced fission, or by neutron capture. For example, some stable isotopes such as neon-21 and neon-22 are produced by several routes of nucleogenic synthesis, and thus only part of their abundance is primordial. Nuclear reactions due to cosmic rays.
Carbon-14 (and other cosmogenic nuclides generated by cosmic rays); daughters of radioactive primordials, such as francium, etc., and nucleogenic nuclides from natural nuclear reactions that are other than those from cosmic rays (such as neutron absorption from spontaneous nuclear fission or neutron emission). Also many synthetic nuclides.