Search results
Results from the WOW.Com Content Network
Thermophotovoltaic (TPV) energy conversion is a direct conversion process from heat to electricity via photons.A basic thermophotovoltaic system consists of a hot object emitting thermal radiation and a photovoltaic cell similar to a solar cell but tuned to the spectrum being emitted from the hot object.
The effects of electromagnetic radiation upon living cells, including those in humans, depends upon the radiation's power and frequency. For low-frequency radiation (radio waves to near ultraviolet) the best-understood effects are those due to radiation power alone, acting through heating when radiation is absorbed.
Radiation waves may travel in unusual patterns compared to conduction heat flow. Radiation allows waves to travel from a heated body through a cold non-absorbing or partially absorbing medium and reach a warmer body again. [14] An example is the case of the radiation waves that travel from the Sun to the Earth.
The vibrational and rotational excited states of greenhouse gases that emit thermal infrared radiation are in LTE up to about 60 km. [7] Radiative transfer calculations show negligible change (0.2%) due to absorption and emission above about 50 km. Schwarzschild's equation therefore is appropriate for most problems involving thermal infrared in ...
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
A notable effect of the absorption of electromagnetic radiation is attenuation of the radiation; attenuation is the gradual reduction of the intensity of light waves as they propagate through the medium. Although the absorption of waves does not usually depend on their intensity (linear absorption), in certain conditions the medium's ...
For example, an ideal fuel cell operating at a temperature of 25 °C having gaseous hydrogen and gaseous oxygen as inputs and liquid water as the output could produce a theoretical maximum amount of electrical energy of 237.129 kJ (0.06587 kWh) per gram mol (18.0154 gram) of water produced and would require 48.701 kJ (0.01353 kWh) per gram mol ...
Heat is energy in transit that flows due to a temperature difference. Unlike heat transmitted by thermal conduction or thermal convection , thermal radiation can propagate through a vacuum . Thermal radiation is characterized by a particular spectrum of many wavelengths that are associated with emission from an object, due to the vibration of ...