enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    A more general formulation of a Gaussian function with a flat-top and Gaussian fall-off can be taken by raising the content of the exponent to a power : = ⁡ ((())). This function is known as a super-Gaussian function and is often used for Gaussian beam formulation. [ 4 ]

  3. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  4. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.

  5. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    Suppose the mean level of cholesterol before and after the prescription of a statin falls from 5.6 mmol/L at baseline to 3.4 mmol/L at one month and to 3.7 mmol/L at two months. Given sufficient power, an ANOVA (analysis of variance) would most likely find a significant fall at one and two months, but the fall is not linear. Furthermore, a post ...

  6. Grade (slope) - Wikipedia

    en.wikipedia.org/wiki/Grade_(slope)

    The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent.

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    More specifically, if the likelihood function is twice continuously differentiable on the k-dimensional parameter space assumed to be an open connected subset of , there exists a unique maximum ^ if the matrix of second partials [], =,, is negative definite for every at which the gradient [] = vanishes, and if the likelihood function approaches ...

  8. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  9. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.