Search results
Results from the WOW.Com Content Network
This property provides a possibility to construct points of a hyperbola if the asymptotes and one point are given. This property of a hyperbola is an affine version of the 4-point-degeneration of Pascal's theorem. [13]
Similarly, a given mass M of gas with changing volume will have variable density δ = M / V, and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the quadrant of absolute temperature and gas density. For hyperbolic coordinates in the theory of relativity see the History section.
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.
Three distinct points create a unique circle [4] Given any two lines, they meet at a unique point [4] (normally, this would contradict the parallel axiom of hyperbolic geometry, since there can be many different lines parallel to the same line [1]) Angle measures have signs. Here, they will be defined in the following way: Consider a triangle XYZ.
For any point in the plane, one can define coordinates x and y by dropping a perpendicular onto the x-axis. x will be the label of the foot of the perpendicular. y will be the distance along the perpendicular of the given point from its foot (positive on one side and negative on the other). Then the distance between two such points will be
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
Lines through a given point P and asymptotic to line R. Non-intersecting lines in hyperbolic geometry also have properties that differ from non-intersecting lines in Euclidean geometry: For any line R and any point P which does not lie on R, in the plane containing line R and point P there are at least two distinct lines through P that do not ...