Search results
Results from the WOW.Com Content Network
Binary classification is the task of classifying the elements of a set into one of two groups (each called class). Typical binary classification problems include: Medical testing to determine if a patient has a certain disease or not; Quality control in industry, deciding whether a specification has been met;
Instead of just having one neuron in the output layer, with binary output, one could have N binary neurons leading to multi-class classification. In practice, the last layer of a neural network is usually a softmax function layer, which is the algebraic simplification of N logistic classifiers, normalized per class by the sum of the N-1 other ...
SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale, University of California, Berkeley, and Stanford University. In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]
Confusion matrix is not limited to binary classification and can be used in multi-class classifiers as well. The confusion matrices discussed above have only two conditions: positive and negative. For example, the table below summarizes communication of a whistled language between two speakers, with zero values omitted for clarity.
Since no single form of classification is appropriate for all data sets, a large toolkit of classification algorithms has been developed. The most commonly used include: [ 9 ] Artificial neural networks – Computational model used in machine learning, based on connected, hierarchical functions Pages displaying short descriptions of redirect ...
Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...
In the context of neural networks, a perceptron is an artificial neuron using the Heaviside step function as the activation function. The perceptron algorithm is also termed the single-layer perceptron , to distinguish it from a multilayer perceptron , which is a misnomer for a more complicated neural network.