Search results
Results from the WOW.Com Content Network
Likewise, admittance is not only a measure of the ease with which a steady current can flow, but also the dynamic effects of the material's susceptance to polarization: = +, where Y is the admittance (siemens); G is the conductance (siemens); B is the susceptance (siemens); and; j 2 = −1, the imaginary unit.
In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).
The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.
Likewise, admittance is not only a measure of the ease with which a steady current can flow but also the dynamic effects of the material's susceptance to polarization: = + where is the admittance, measured in siemens. is the conductance, measured in siemens.
Foster's theorem applies equally to the admittance of a network, that is the susceptance (imaginary part of admittance) of a passive, lossless one-port monotonically increases with frequency. This result may seem counterintuitive since admittance is the reciprocal of impedance, but is easily proved.
Admittance (Y) parameters may be defined by applying a fixed voltage to one port (V1) of a transmission line with the other end shorted to ground and measuring the resulting current running into each port (I1, I2) [8] [9] and computing the admittance on each port as a ratio of I/V The admittance parameter Y11 is I1/V1, and the admittance ...
Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks.
Transconductance (for transfer conductance), also infrequently called mutual conductance, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciprocal of resistance. Transadmittance (or transfer admittance) is the AC equivalent of transconductance.