Search results
Results from the WOW.Com Content Network
An annual rate of return is a return over a period of one year, such as January 1 through December 31, or June 3, 2006, through June 2, 2007, whereas an annualized rate of return is a rate of return per year, measured over a period either longer or shorter than one year, such as a month, or two years, annualized for comparison with a one-year ...
If this instantaneous return is received continuously for one period, then the initial value P t-1 will grow to = during that period. See also continuous compounding . Since this analysis did not adjust for the effects of inflation on the purchasing power of P t , RS and RC are referred to as nominal rates of return .
The rate of return on a portfolio can be calculated indirectly as the weighted average rate of return on the various assets within the portfolio. [3] The weights are proportional to the value of the assets within the portfolio, to take into account what portion of the portfolio each individual return represents in calculating the contribution of that asset to the return on the portfolio.
If all the money had been invested at the beginning of Year 1, the return by any measure would most likely have been 50%. $1,500 would have grown by 100% to $3,000 at the end of Year 1, and then declined by 25% to $2,250 at the end of Year 2, resulting in an overall gain of $750, i.e. 50% of $1,500. The difference is a matter of perspective.
The force of interest is less than the annual effective interest rate, but more than the annual effective discount rate. It is the reciprocal of the e-folding time. A way of modeling the force of inflation is with Stoodley's formula: = + + where p, r and s are estimated.
Thus, internal rate(s) of return follow from the NPV as a function of the rate of return. This function is continuous. Towards a rate of return of −100% the NPV approaches infinity with the sign of the last cash flow, and towards a rate of return of positive infinity the NPV approaches the first cash flow (the one at the present).
The theoretical return period between occurrences is the inverse of the average frequency of occurrence. For example, a 10-year flood has a 1/10 = 0.1 or 10% chance of being exceeded in any one year and a 50-year flood has a 0.02 or 2% chance of being exceeded in any one year.
This formula "reveals that the market value at the end of any period must be equal to the beginning market value plus net contributions plus the rate of return earned of the assets in the fund at the beginning of the period and the return earned on one-half of the contributions.