Search results
Results from the WOW.Com Content Network
Clearance of a substance is sometimes expressed as the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood.
In pharmacokinetics, the rate of infusion (or dosing rate) refers not just to the rate at which a drug is administered, but the desired rate at which a drug should be administered to achieve a steady state of a fixed dose which has been demonstrated to be therapeutically effective. Abbreviations include K in, [1] K 0, [2] or R 0.
Hyperglycemic clamp technique: The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a continuous infusion of glucose. This hyperglycemic plateau is maintained by adjustment of a variable glucose infusion, based on the rate of insulin secretion and glucose metabolism. Because the plasma glucose concentration is ...
Because ln 2 equals 0.693, the half-life is readily calculated from the elimination rate constant. Half-life has units of time, and the elimination rate constant has units of 1/time, e.g., per hour or per day.
The elimination rate constant K or K e is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. [1] It is often abbreviated K or K e. It is equivalent to the fraction of a substance that is removed per unit time measured at any particular instant and has units of T −1.
This gives a = 100 μg/mL if the drug stays in the blood stream only, and thus its volume of distribution is the same as that is = 0.08 L/kg. If the drug distributes into all body water the volume of distribution would increase to approximately V D = {\displaystyle V_{D}=} 0.57 L/kg [ 8 ]
This concept is used when the rate of removal is roughly exponential. [ 6 ] In a medical context, half-life explicitly describes the time it takes for the blood plasma concentration of a substance to halve ( plasma half-life ) its steady-state when circulating in the full blood of an organism .
The user interface of pumps usually requests details on the type of infusion from the technician or nurse that sets them up: . Continuous infusion usually consists of small pulses of infusion, usually between 500 nanoliters and 10 milliliters, depending on the pump's design, with the rate of these pulses depending on the programmed infusion speed.