Search results
Results from the WOW.Com Content Network
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
Hendricks was also an authority on the design of inlaid magic squares and cubes (and in 1999, a magic tesseract). Following his retirement, he gave many public lectures on magic squares and cubes in schools and in-service teacher's conventions in Canada and the northern United States. He also developed a course on magic squares and cubes which ...
G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [18] the largest number now known not to be a sum of ...
Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct ...
An example of a 3 × 3 × 3 magic cube. In this example, no slice is a magic square. In this case, the cube is classed as a simple magic cube.. In mathematics, a magic cube is the 3-dimensional equivalent of a magic square, that is, a collection of integers arranged in an n × n × n pattern such that the sums of the numbers on each row, on each column, on each pillar and on each of the four ...
The manipulations of the Rubik's Cube form the Rubik's Cube group. The Rubik's Cube group (,) represents the structure of the Rubik's Cube mechanical puzzle.Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces.
More generally, an a-by-b rectangle can be covered with square tiles of side length c only if c is a common divisor of a and b. For example, a 24-by-60 rectangular area can be divided into a grid of: 1-by-1 squares, 2-by-2 squares, 3-by-3 squares, 4-by-4 squares, 6-by-6 squares or 12-by-12 squares.
F.A.P.Barnard published order 8 and order 11 perfect cubes in 1888. [6] By the modern (given by J.R. Hendricks) definition, there are actually six classes of magic cube; simple magic cubes, pantriagonal magic cubes, diagonal magic cubes, pantriagonal diagonal magic cubes, pandiagonal magic cubes, and perfect magic cubes. [7]