Search results
Results from the WOW.Com Content Network
Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho-AMP linked to phosphorylated pantothenic acid (vitamin B 5) and cysteamine. Long-chain acyl-CoA esters are substrates for a number of important enzymatic reactions and play a central role in the regulation of metabolism as allosteric regulators of several ...
acyl-P + HS-CoA → acyl-S-CoA + P i + H + Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. [3] For example, the substrates for medium chain acyl-CoA synthase are 4-11 carbon fatty acids. [4] The enzyme acyl-CoA thioesterase takes of the acyl-CoA to form a free fatty acid and coenzyme A. [4]
Fatty-acyl-CoA synthase, or more commonly known as yeast fatty acid synthase (and not to be confused with long chain fatty acyl-CoA synthetase), is an enzyme complex responsible for fatty acid biosynthesis, and is of Type I Fatty Acid Synthesis (FAS). Yeast fatty acid synthase plays a pivotal role in fatty acid synthesis.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) is an enzyme in the family of hydrolases that specifically acts on thioester bonds. It catalyzes the hydrolysis of long chain fatty acyl thioesters of acyl carrier protein or coenzyme A to form free fatty acid and the corresponding thiol: palmitoyl-CoA + H 2 O = CoA + palmitate
Fatty acids are first converted to acyl-CoA. Acyl-CoA is then degraded in a four-step cycle of oxidation, hydration, oxidation and thiolysis catalyzed by four respective enzymes, namely acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and thiolase. The cycle produces a new fatty acid chain with two fewer carbons and ...
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.
Thioesters are common intermediates in many biosynthetic reactions, including the formation and degradation of fatty acids and mevalonate, precursor to steroids. Examples include malonyl-CoA , acetoacetyl-CoA , propionyl-CoA , cinnamoyl-CoA , and acyl carrier protein (ACP) thioesters.
Acetyl-CoA hydrolase, palmitoyl-CoA hydrolase, succinyl-CoA hydrolase, formyl-CoA hydrolase, acyl-CoA hydrolase are a few examples of this group of enzymes. Ubiquitin thiolesterase is a well-known example, whose structure has been analyzed. Humans genes which encode thioesterases include: [2]