enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Steffensen's method. Newton-like root-finding algorithm that does not use derivatives. In numerical analysis, Steffensen's method is an iterative method for numerical root-finding named after Johan Frederik Steffensen that is similar to the secant method and to Newton's method. Steffensen's method achieves a quadratic order of convergence ...

  3. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    e. In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, [1] cyclometric, [2] or arcus functions [3]) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics ...

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above. Note that by Pythagorean theorem.

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x2 = a is equivalent to finding a root of the function f(x) = x2 − a. The Newton iteration defined by this function is given by.

  8. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    It is an interpolating function, i.e., sinc(0) = 1, and sinc(k) = 0 for nonzero integer k. The functions x k (t) = sinc(t − k) (k integer) form an orthonormal basis for bandlimited functions in the function space L 2 (R), with highest angular frequency ω H = π (that is, highest cycle frequency f H = ⁠ 1 / 2 ⁠). Other properties of the ...

  9. Davidon–Fletcher–Powell formula - Wikipedia

    en.wikipedia.org/wiki/Davidon–Fletcher–Powell...

    The Davidon–Fletcher–Powell formula (or DFP; named after William C. Davidon, Roger Fletcher, and Michael J. D. Powell) finds the solution to the secant equation that is closest to the current estimate and satisfies the curvature condition. It was the first quasi-Newton method to generalize the secant method to a multidimensional problem.