Search results
Results from the WOW.Com Content Network
Parametric equation. Representation of a curve by a function of a parameter. The butterfly curve can be defined by parametric equations of x and y. In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. [1] Parametric equations are commonly used to express the ...
A Bézier curve is defined by a set of control points P0 through Pn, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.
Parabola. Part of a parabola (blue), with various features (other colours). The complete parabola has no endpoints. In this orientation, it extends infinitely to the left, right, and upward. The parabola is a member of the family of conic sections. In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U ...
A parametric equation is an equation in which the solutions for the variables are expressed as functions of some other variables, called parameters appearing in the equations; A functional equation is an equation in which the unknowns are functions rather than simple quantities; Equations involving derivatives, integrals and finite differences:
Hyperbola. A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case. Hyperbola (red): features. In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its ...
Parametric derivative. In calculus, a parametric derivative is a derivative of a dependent variable with respect to another dependent variable that is taken when both variables depend on an independent third variable, usually thought of as "time" (that is, when the dependent variables are x and y and are given by parametric equations in t).
A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are ...
is equal to one. This parametrization gives the same value for the curvature, as it amounts to division by r 3 in both the numerator and the denominator in the preceding formula. The same circle can also be defined by the implicit equation F(x, y) = 0 with F(x, y) = x 2 + y 2 – r 2. Then, the formula for the curvature in this case gives