Ad
related to: norman wildberger rational proportions theorem worksheet 1
Search results
Results from the WOW.Com Content Network
The book was "essentially self-published" [1] by Wildberger through his publishing company Wild Egg. The formulas and theorems in the book are regarded as correct mathematics but the claims about practical or pedagogical superiority are primarily promoted by Wildberger himself and have received mixed reviews.
Having attending several of Norman Wildeberger's talks, the rationale behind rational trigonometry is that the concept of an angle belongs to a circle (ie, Euler's formula), and that the concept of spread is far more natural for a triangle (c.f. Thales' theorem). Angles and distance also break down in fields other than the real numbers, whereas ...
The half pseudosphere of curvature −1 is covered by the interior of a horocycle. In the Poincaré half-plane model one convenient choice is the portion of the half-plane with y ≥ 1 . [ 7 ] Then the covering map is periodic in the x direction of period 2 π , and takes the horocycles y = c to the meridians of the pseudosphere and the ...
I just created this article, because Wildberger clearly needed an article, as he has made an important contribution to mathematics with his new subject known as "rational trigonometry."Dratman 01:56, 17 September 2011 (UTC) I think there have been changes since the Wikipedia:Articles for deletion/Norman J. Wildberger discussion. Wildberger is ...
Wildberger is a surname. Notable people with the surname include: Ed Wildberger, Missouri politician; Jacques Wildberger, Swiss composer; Norman J. Wildberger, mathematician known for rational trigonometry; Tina Wildberger, Hawaii politician
In the form of sin 2 (θ) the haversine of the double-angle Δ describes the relation between spreads and angles in rational trigonometry, a proposed reformulation of metrical planar and solid geometries by Norman John Wildberger since 2005. [49]
Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.
A well-known example is the Taniyama–Shimura conjecture, now the modularity theorem, which proposed that each elliptic curve over the rational numbers can be translated into a modular form (in such a way as to preserve the associated L-function). There are difficulties in identifying this with an isomorphism, in any strict sense of the word.
Ad
related to: norman wildberger rational proportions theorem worksheet 1