Search results
Results from the WOW.Com Content Network
Philipp Koehn (born 1 August 1971 in Erlangen, West Germany) is a computer scientist and researcher in the field of machine translation. [1] [2] His primary research interest is statistical machine translation and he is one of the inventors of a method called phrase based machine translation. This is a sub-field of statistical translation ...
Neural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model.
Machine translation is use of computational techniques to translate text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. Early approaches were mostly rule-based or statistical. These methods have since been superseded by neural machine translation [1] and large language models ...
Statistical machine translation was re-introduced in the late 1980s and early 1990s by researchers at IBM's Thomas J. Watson Research Center. [3] [4] [5] Before the introduction of neural machine translation, it was by far the most widely studied machine translation method.
Google Neural Machine Translation (GNMT) was a neural machine translation (NMT) system developed by Google and introduced in November 2016 that used an artificial neural network to increase fluency and accuracy in Google Translate.
The term neural machine translation was coined by Bahdanau et al [18] and Sutskever et al [19] who also published the first research regarding this topic in 2014. Neural networks only needed a fraction of the memory needed by statistical models and whole sentences could be modeled in an integrated manner. The first large scale NMT was launched ...
Moses is a statistical machine translation engine that can be used to train statistical models of text translation from a source language to a target language, developed by the University of Edinburgh. [2] Moses then allows new source-language text to be decoded using these models to produce automatic translations in the target language.
A rendition of the Vauquois triangle, illustrating the various approaches to the design of machine translation systems.. The direct, transfer-based machine translation and interlingual machine translation methods of machine translation all belong to RBMT but differ in the depth of analysis of the source language and the extent to which they attempt to reach a language-independent ...