enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    Learning algorithms based on this framework exhibit good generalization ability and finite sample convergence, while often being simpler and more effective than information theoretic methods; Thus, learning via the kernel embedding of distributions offers a principled drop-in replacement for information theoretic approaches and is a framework ...

  3. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.

  4. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Non-parametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the probability distributions of the variables being assessed. The most frequently used tests include

  5. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    According to David Salsburg, the algorithms used in kernel regression were independently developed and used in fuzzy systems: "Coming up with almost exactly the same computer algorithm, fuzzy systems and kernel density-based regressions appear to have been developed completely independently of one another."

  6. Additive model - Wikipedia

    en.wikipedia.org/wiki/Additive_Model

    In statistics, an additive model (AM) is a nonparametric regression method. It was suggested by Jerome H. Friedman and Werner Stuetzle (1981) [ 1 ] and is an essential part of the ACE algorithm. The AM uses a one-dimensional smoother to build a restricted class of nonparametric regression models.

  7. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables. The term "MARS" is trademarked and licensed to Salford Systems. In order to avoid trademark infringements, many open-source implementations of MARS are called "Earth". [2] [3]

  8. Category:Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Category:Nonparametric...

    Nonparametric models are therefore also called distribution free. Nonparametric (or distribution-free ) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics , make no assumptions about the frequency distributions of the variables being assessed.

  9. Nonlinear modelling - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_modelling

    The newer nonlinear modelling approaches include non-parametric methods, such as feedforward neural networks, kernel regression, multivariate splines, etc., which do not require a priori knowledge of the nonlinearities in the relations. Thus the nonlinear modelling can utilize production data or experimental results while taking into account ...