enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.

  5. Sieve method - Wikipedia

    en.wikipedia.org/wiki/Sieve_method

    Sieve method, or the method of sieves, can mean: in mathematics and computer science, the sieve of Eratosthenes, a simple method for finding prime numbers in number theory, any of a variety of methods studied in sieve theory; in combinatorics, the set of methods dealt with in sieve theory or more specifically, the inclusion–exclusion principle

  6. Legendre sieve - Wikipedia

    en.wikipedia.org/wiki/Legendre_sieve

    In this example the fact that the Legendre identity is derived from the Sieve of Eratosthenes is clear: the first term is the number of integers below X, the second term removes the multiples of all primes, the third term adds back the multiples of two primes (which were miscounted by being "crossed out twice") but also adds back the multiples ...

  7. Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Eratosthenes

    Eratosthenes proposed a simple algorithm for finding prime numbers. This algorithm is known in mathematics as the Sieve of Eratosthenes . In mathematics, the sieve of Eratosthenes (Greek: κόσκινον Ἐρατοσθένους), one of a number of prime number sieves , is a simple, ancient algorithm for finding all prime numbers up to any ...

  8. Lehmer sieve - Wikipedia

    en.wikipedia.org/wiki/Lehmer_sieve

    A sieve in general is intended to find the numbers which are remainders when a set of numbers are divided by a second set. Generally, they are used in finding solutions of Diophantine equations or to factor numbers. A Lehmer sieve will signal that such solutions are found in a variety of ways depending on the particular construction.

  9. Byte Sieve - Wikipedia

    en.wikipedia.org/wiki/Byte_Sieve

    The Byte Sieve is a computer-based implementation of the Sieve of Eratosthenes published by Byte as a programming language performance benchmark.It first appeared in the September 1981 edition of the magazine and was revisited on occasion.