enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Apache Spark - Wikipedia

    en.wikipedia.org/wiki/Apache_Spark

    The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API. In Spark 1.x, the RDD was the primary application programming interface (API), but as of Spark 2.x use of the Dataset API is encouraged [3] even though the RDD API is not deprecated. [4] [5] The RDD technology still underlies the Dataset API. [6] [7]

  3. Data set - Wikipedia

    en.wikipedia.org/wiki/Data_set

    Various plots of the multivariate data set Iris flower data set introduced by Ronald Fisher (1936). [1]A data set (or dataset) is a collection of data.In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record of the data set in question.

  4. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    When the dataset is completely represented as categorical variables, one is able to build the corresponding so-called complete disjunctive table. We denote this table X {\displaystyle X} . If I {\displaystyle I} persons answered a survey with J {\displaystyle J} multiple choices questions with 4 answers each, X {\displaystyle X} will have I ...

  5. SPARK (programming language) - Wikipedia

    en.wikipedia.org/wiki/SPARK_(programming_language)

    A fourth version of the SPARK language, SPARK 2014, based on Ada 2012, was released on April 30, 2014. SPARK 2014 is a complete re-design of the language and supporting verification tools. The SPARK language consists of a well-defined subset of the Ada language that uses contracts to describe the specification of components in a form that is ...

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Data transformation (computing) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    Interactive data transformation (IDT) [13] is an emerging capability that allows business analysts and business users the ability to directly interact with large datasets through a visual interface, [9] understand the characteristics of the data (via automated data profiling or visualization), and change or correct the data through simple ...

  9. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.