Search results
Results from the WOW.Com Content Network
Likewise, admittance is not only a measure of the ease with which a steady current can flow, but also the dynamic effects of the material's susceptance to polarization: = +, where Y is the admittance (siemens); G is the conductance (siemens); B is the susceptance (siemens); and; j 2 = −1, the imaginary unit.
The nodal admittance matrix of a power system is a form of Laplacian matrix of the nodal admittance diagram of the power system, which is derived by the application of Kirchhoff's laws to the admittance diagram of the power system. Starting from the single line diagram of a power system, the nodal admittance diagram is derived by:
In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).
Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks.
The admittance is the inverse of impedance. Therefore, = The conductance can be calculated as, = Hence the susceptance, = or = + Here, is the wattmeter reading is the applied rated voltage
The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.
Impedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks.
Any 2-port S-parameter may be displayed on a Smith chart using polar co-ordinates, but the most meaningful would be and since either of these may be converted directly into an equivalent normalized impedance (or admittance) using the characteristic Smith Chart impedance (or admittance) scaling appropriate to the system impedance.