Search results
Results from the WOW.Com Content Network
For example, the CGS volume magnetic susceptibility of water at 20 °C is 7.19 × 10 −7, which is 9.04 × 10 −6 using the SI convention, both quantities being dimensionless. Whereas for most electromagnetic quantities, which system of quantities it belongs to can be disambiguated by incompatibility of their units, this is not true for the ...
Half-life: t 1/2: Time for a quantity to decay to half its initial value s T: Heat: Q: Thermal energy: joule (J) L 2 M T −2: Heat capacity: C p: Energy per unit temperature change J/K L 2 M T −2 Θ −1: extensive Heat flux density: ϕ Q: Heat flow per unit time per unit surface area W/m 2: M T −3: Illuminance: E v: Wavelength-weighted ...
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
In the People's Republic of China, since 1984, the chi has been defined as exactly 1/3 of a metre, i.e., 33 + 1 ⁄ 3 cm (13.1 in). However, in the Hong Kong SAR the corresponding unit, pronounced tsek (cek3) in Cantonese, is defined as exactly 0.371475 m (1 ft 2.6250 in) or 1 7/32 ft. [2] The two units are sometimes referred to in English as "Chinese foot" and "Hong Kong foot".
The magnetization is the negative derivative of the free energy with respect to the applied field, and so the magnetization per unit volume is = , where n is the number density of magnetic moments. [1]: 117 The formula above is known as the Langevin paramagnetic equation.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
Cartesian y-axis basis unit vector unitless kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector