Search results
Results from the WOW.Com Content Network
Samarium-149 is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product 149 Nd (yield 1.0888%).
Samarium-149 (149 Sm) is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product 149 Nd (yield 1.0888%).
Some of the fission products generated during nuclear reactions have a high neutron absorption capacity, such as xenon-135 (microscopic cross-section σ = 2,000,000 barns (b); up to 3 million barns in reactor conditions) [3] and samarium-149 (σ = 74,500 b). Because these two fission product poisons remove neutrons from the reactor, they will ...
Samarium-149 is the second most important neutron poison in nuclear reactor physics. Samarium-151, produced at lower yields, is the third most abundant medium-lived fission product but emits only weak beta radiation. Both have high neutron absorption cross sections, so that much of them produced in a reactor are later destroyed there by neutron ...
beta decays to very long lived Samarium-147 (half life>age of the universe); has seen some use in radioisotope thermoelectric generators: 1.0888%: Samarium: 149 Sm: Observationally stable: 2nd most significant neutron poison. 0.9% [3] Iodine: 129 I: 15.7 My: Long-lived fission product. Candidate for disposal by nuclear transmutation. 0.4203% ...
Template: Infobox samarium isotopes. 2 languages. Simple English; ... 149 Sm 13.8% stable 150 Sm 7.37% stable 151 Sm synth 94.6 y:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Other fission products, such as xenon-135 and samarium-149, have a high neutron absorption cross section. Since a nuclear reactor must balance neutron production and absorption rates, fission products that absorb neutrons tend to "poison" or shut the reactor down; this is controlled with burnable poisons and control rods.