enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    The Curie temperature of nanoparticles is also affected by the crystal lattice structure: body-centred cubic (bcc), face-centred cubic (fcc), and a hexagonal structure (hcp) all have different Curie temperatures due to magnetic moments reacting to their neighbouring electron spins. fcc and hcp have tighter structures and as a results have ...

  3. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    is the magnitude of the applied magnetic field (A/m), is absolute temperature , is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  4. Magnetic Thermodynamic Systems - Wikipedia

    en.wikipedia.org/wiki/Magnetic_Thermodynamic_Systems

    Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .

  5. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    Skin depth, δ, is defined as the depth where the current density is just 1/e (about 37%) of the value at the surface; it depends on the frequency of the current and the electrical and magnetic properties of the conductor. Induction cookers use stranded coils to reduce heating of the coil itself due to skin effect. The AC frequencies used in ...

  6. Curie–Weiss law - Wikipedia

    en.wikipedia.org/wiki/Curie–Weiss_law

    Here μ 0 is the permeability of free space; M the magnetization (magnetic moment per unit volume), B = μ 0 H is the magnetic field, and C the material-specific Curie constant: = (+), where k B is the Boltzmann constant, N the number of magnetic atoms (or molecules) per unit volume, g the Landé g-factor, μ B the Bohr magneton, J the angular ...

  7. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    Compounds at temperatures below the Curie temperature exhibit long-range magnetic order in the form of ferromagnetism. Another critical temperature is the Néel temperature, below which antiferromagnetism occurs. The hexahydrate of nickel chloride, NiCl 2 ·6H 2 O, has a Néel temperature of 8.3 K. The susceptibility is a maximum at this ...

  8. Landau levels - Wikipedia

    en.wikipedia.org/wiki/Landau_levels

    The effects of Landau levels may only be observed when the mean thermal energy kT is smaller than the energy level separation, , meaning low temperatures and strong magnetic fields. Each Landau level is degenerate because of the second quantum number k y {\displaystyle k_{y}} , which can take the values k y = 2 π N L y , {\displaystyle k_{y ...

  9. Plasma parameters - Wikipedia

    en.wikipedia.org/wiki/Plasma_parameters

    The SI unit of temperature is the kelvin (K), but using the above relation the electron temperature is often expressed in terms of the energy unit electronvolt (eV). Each kelvin (1 K) corresponds to 8.617 333 262 ... × 10 −5 eV ; this factor is the ratio of the Boltzmann constant to the elementary charge . [ 6 ]