Search results
Results from the WOW.Com Content Network
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [1] [2] It is also known as the shift-and-add-3 algorithm, and can be implemented using a small number of gates in computer hardware, but at the expense of high latency. [3]
In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time. In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight.
BCD (binary-coded decimal), also called alphanumeric BCD, alphameric BCD, BCD Interchange Code, [1] or BCDIC, [1] is a family of representations of numerals, uppercase Latin letters, and some special and control characters as six-bit character codes. Unlike later encodings such as ASCII, BCD codes were not standardized. Different computer ...
The Aiken code (also known as 2421 code) [1] [2] is a complementary binary-coded decimal (BCD) code. A group of four bits is assigned to the decimal digits from 0 to 9 according to the following table. The code was developed by Howard Hathaway Aiken and is still used today in digital clocks, pocket calculators and similar devices [citation needed].
Densely packed decimal (DPD) is an efficient method for binary encoding decimal digits.. The traditional system of binary encoding for decimal digits, known as binary-coded decimal (BCD), uses four bits to encode each digit, resulting in significant wastage of binary data bandwidth (since four bits can store 16 states and are being used to store only 10), even when using packed BCD.
Most pocket calculators do all their calculations in binary-coded decimal (BCD) rather than binary. BCD is common in electronic systems where a numeric value is to be displayed, especially in systems consisting solely of digital logic, and not containing a microprocessor.
Conversion of (357) 10 to binary notation results in (101100101) To convert from a base-10 integer to its base-2 (binary) equivalent, the number is divided by two. The remainder is the least-significant bit. The quotient is again divided by two; its remainder becomes the next least significant bit.
Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example: