enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Busy waiting - Wikipedia

    en.wikipedia.org/wiki/Busy_waiting

    Busy-waiting itself can be made much less wasteful by using a delay function (e.g., sleep()) found in most operating systems. This puts a thread to sleep for a specified time, during which the thread will waste no CPU time. If the loop is checking something simple then it will spend most of its time asleep and will waste very little CPU time.

  3. Sleep (system call) - Wikipedia

    en.wikipedia.org/wiki/Sleep_(system_call)

    Sleep causes the thread or process to give up the remainder of its time slice and stay in the Not Runnable state for the specified duration. While there is generally a guarantee for the minimum time period, there is no strict guarantee that the thread will run immediately or soon, or even at all, once the specified time has passed.

  4. Thread pool - Wikipedia

    en.wikipedia.org/wiki/Thread_pool

    In computer programming, a thread pool is a software design pattern for achieving concurrency of execution in a computer program. Often also called a replicated workers or worker-crew model , [ 1 ] a thread pool maintains multiple threads waiting for tasks to be allocated for concurrent execution by the supervising program.

  5. Spinlock - Wikipedia

    en.wikipedia.org/wiki/Spinlock

    The result is an indefinite postponement until the thread holding the lock can finish and release it. This is especially true on a single-processor system, where each waiting thread of the same priority is likely to waste its quantum (allocated time where a thread can run) spinning until the thread that holds the lock is finally finished.

  6. Thread (computing) - Wikipedia

    en.wikipedia.org/wiki/Thread_(computing)

    A process with two threads of execution, running on one processor Program vs. Process vs. Thread Scheduling, Preemption, Context Switching. In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. [1]

  7. Yield (multithreading) - Wikipedia

    en.wikipedia.org/wiki/Yield_(multithreading)

    std::this_thread::yield() in the language C++, introduced in C++11. The Yield method is provided in various object-oriented programming languages with multithreading support, such as C# and Java. [2] OOP languages generally provide class abstractions for thread objects. yield in Kotlin

  8. pthreads - Wikipedia

    en.wikipedia.org/wiki/Pthreads

    This program creates five threads, each executing the function perform_work that prints the unique number of this thread to standard output. If a programmer wanted the threads to communicate with each other, this would require defining a variable outside of the scope of any of the functions, making it a global variable .

  9. Memory model (programming) - Wikipedia

    en.wikipedia.org/wiki/Memory_model_(programming)

    After it was established that threads could not be implemented safely as a library without placing certain restrictions on the implementation and, in particular, that the C and C++ standards (C99 and C++03) lacked necessary restrictions, [3] [4] the C++ threading subcommittee set to work on suitable memory model; in 2005, they submitted C ...