enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Population ecology - Wikipedia

    en.wikipedia.org/wiki/Population_ecology

    When describing growth models, there are two main types of models that are most commonly used: exponential and logistic growth. When the per capita rate of increase takes the same positive value regardless of population size, the graph shows exponential growth.

  3. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.

  4. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:

  5. Allee effect - Wikipedia

    en.wikipedia.org/wiki/Allee_effect

    The term "Allee principle" was introduced in the 1950s, a time when the field of ecology was heavily focused on the role of competition among and within species. [ 1 ] [ 3 ] The classical view of population dynamics stated that due to competition for resources, a population will experience a reduced overall growth rate at higher density and ...

  6. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...

  7. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially. However, as population size nears carrying capacity, the growth decreases and reaches zero at K. [20]

  8. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...

  9. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    If τ > 0 and b > 1, then x has exponential growth. If τ < 0 and b > 1, or τ > 0 and 0 < b < 1, then x has exponential decay. Example: If a species of bacteria doubles every ten minutes, starting out with only one bacterium, how many bacteria would be present after one hour? The question implies a = 1, b = 2 and τ = 10 min.