enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    function Depth-Limited-Search-Forward(u, Δ, F) is if Δ = 0 then F ← F {u} (Mark the node) return foreach child of u do Depth-Limited-Search-Forward(child, Δ − 1, F) function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head ...

  3. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Step 3—Row D has a 1 in column 5 and thus is selected (nondeterministically). The algorithm moves to the first branch at level 2… Level 2: Select Row D Step 4—Row D is included in the partial solution. Step 5—Row D has a 1 in columns 3, 5, and 6:

  4. Bridge pattern - Wikipedia

    en.wikipedia.org/wiki/Bridge_pattern

    The Bridge design pattern is one of the twenty-three well-known GoF design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse.

  5. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  6. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Animated example of a depth-first search For the following graph: a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following ...

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  8. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):

  9. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    Randomized depth-first search on a hexagonal grid. The depth-first search algorithm of maze generation is frequently implemented using backtracking. This can be described with a following recursive routine: Given a current cell as a parameter; Mark the current cell as visited; While the current cell has any unvisited neighbour cells