enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    When S is finite, its completion is also finite, and has the smallest number of elements among all finite complete lattices containing S. [ 12 ] The partially ordered set S is join-dense and meet-dense in the Dedekind–MacNeille completion; that is, every element of the completion is a join of some set of elements of S , and is also the meet ...

  3. Market environment - Wikipedia

    en.wikipedia.org/wiki/Market_environment

    Market environment and business environment are marketing terms that refer to factors and forces that affect a firm's ability to build and maintain successful customer relationships. The business environment has been defined as "the totality of physical and social factors that are taken directly into consideration in the decision-making ...

  4. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. [2] It can be used to prove many of the fundamental results of real analysis , such as the intermediate value theorem , the Bolzano–Weierstrass theorem , the extreme value theorem , and the Heine ...

  5. Dedekind number - Wikipedia

    en.wikipedia.org/wiki/Dedekind_number

    In mathematics, the Dedekind numbers are a rapidly growing sequence of integers named after Richard Dedekind, who defined them in 1897. [1] The Dedekind number M ( n ) {\displaystyle M(n)} is the number of monotone Boolean functions of n {\displaystyle n} variables.

  6. Charles Sanders Peirce - Wikipedia

    en.wikipedia.org/wiki/Charles_Sanders_Peirce

    In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.

  7. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  8. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  9. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| = |Y|, and Dedekind-finite if such a subset does not exist. The finite cardinals are just the natural numbers, in the sense that a set X is finite if and only if |X| = |n| = n for some natural number n. Any other set is infinite.