enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    In mathematics, the question of whether the Fourier series of a given periodic function converges to the given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur.

  3. Carleson's theorem - Wikipedia

    en.wikipedia.org/wiki/Carleson's_theorem

    This was disproved by Paul du Bois-Reymond, who showed in 1876 that there is a continuous function whose Fourier series diverges at one point. The almost-everywhere convergence of Fourier series for L 2 functions was postulated by N. N. Luzin , and the problem was known as Luzin's conjecture (up until its proof by Carleson (1966)).

  4. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem.

  5. Dini criterion - Wikipedia

    en.wikipedia.org/wiki/Dini_criterion

    Download as PDF; Printable version ... Dini's criterion is a condition for the pointwise convergence of Fourier ... , there is a continuous function with | | () ...

  6. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...

  7. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  8. Dini test - Wikipedia

    en.wikipedia.org/wiki/Dini_test

    Then the Fourier series of f converges at t to f(t). For example, the theorem holds with ω f = log −2 (⁠ 1 / δ ⁠) but does not hold with log −1 (⁠ 1 / δ ⁠). Theorem (the Dini–Lipschitz test): Assume a function f satisfies = (⁡).

  9. Dirichlet–Jordan test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet–Jordan_test

    In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a complex-valued, periodic function to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity).