enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The dimension of this vector space, if it exists, [a] is called the degree of the extension. For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b]

  3. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field.

  5. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space.

  6. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .

  7. Complexification - Wikipedia

    en.wikipedia.org/wiki/Complexification

    In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers.

  8. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    If the vector space is a finite-dimensional real or complex one, all norms are equivalent. On the other hand, in the case of infinite-dimensional vector spaces, not all norms are equivalent. Equivalent norms define the same notions of continuity and convergence and for many purposes do not need to be distinguished.

  9. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Inner product spaces are a subset of normed vector spaces, which are a subset of metric spaces, which in turn are a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]