Search results
Results from the WOW.Com Content Network
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
In computer programming, a collection is an abstract data type that is a grouping of items that can be used in a polymorphic way. Often, the items are of the same data type such as int or string . Sometimes the items derive from a common type; even deriving from the most general type of a programming language such as object or variant .
One of the very useful aspects of Python is the concept of collection (or container) types. In general a collection is an object that contains other objects in a way that is easily referenced or indexed. Collections come in two basic forms: sequences and mappings. The ordered sequential types are lists (dynamic arrays), tuples, and strings.
In economics and computer science, Fractional Pareto efficiency or Fractional Pareto optimality (fPO) is a variant of Pareto efficiency used in the setting of fair allocation of discrete objects. An allocation of objects is called discrete if each item is wholly allocated to a single agent; it is called fractional if some objects are split ...
A significant aspect of the Pareto frontier in economics is that, at a Pareto-efficient allocation, the marginal rate of substitution is the same for all consumers. [5] A formal statement can be derived by considering a system with m consumers and n goods, and a utility function of each consumer as = where = (,, …,) is the vector of goods, both for all i.
Considered a sequential collection, a stack has one end which is the only position at which the push and pop operations may occur, the top of the stack, and is fixed at the other end, the bottom. A stack may be implemented as, for example, a singly linked list with a pointer to the top element. A stack may be implemented to have a bounded capacity.
After processing all the input, the stack contains 56, which is the answer.. From this, the following can be concluded: a stack-based programming language has only one way to handle data, by taking one piece of data from atop the stack, termed popping, and putting data back atop the stack, termed pushing.