Search results
Results from the WOW.Com Content Network
If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...
If the probability density function of a random variable (or vector) X is given as f X (x), it is possible (but often not necessary; see below) to calculate the probability density function of some variable Y = g(X).
A frequency distribution shows a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc.
Given a known joint distribution of two discrete random variables, say, X and Y, the marginal distribution of either variable – X for example – is the probability distribution of X when the values of Y are not taken into consideration. This can be calculated by summing the joint probability distribution over all values of Y.
More generally, for each value of , we can calculate the corresponding likelihood. The result of such calculations is displayed in Figure 1. The result of such calculations is displayed in Figure 1. The integral of L {\textstyle {\mathcal {L}}} over [0, 1] is 1/3; likelihoods need not integrate or sum to one over the parameter space.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The equation above reduces to that of the univariate normal distribution if is a matrix (i.e., a single real number). The circularly symmetric version of the complex normal distribution has a slightly different form.
The joint information is equal to the mutual information plus the sum of all the marginal information (negative of the marginal entropies) for each particle coordinate. Boltzmann's assumption amounts to ignoring the mutual information in the calculation of entropy, which yields the thermodynamic entropy (divided by the Boltzmann constant).