Search results
Results from the WOW.Com Content Network
In computational geometry, the largest empty rectangle problem, [2] maximal empty rectangle problem [3] or maximum empty rectangle problem, [4] is the problem of finding a rectangle of maximal size to be placed among obstacles in the plane. There are a number of variants of the problem, depending on the particularities of this generic ...
For the convex polygon, a linear time algorithm for the minimum-area enclosing rectangle is known. It is based on the observation that a side of a minimum-area enclosing box must be collinear with a side of the convex polygon. [ 1 ]
For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, [1] [2] when the rectangle is oriented as a "landscape". The aspect ratio is most often expressed as two integer numbers separated by a colon (x:y), less commonly as a simple or decimal fraction. The values x and y do ...
A series of geometric shapes enclosed by its minimum bounding rectangle. In computational geometry, the minimum bounding rectangle (MBR), also known as bounding box (BBOX) or envelope, is an expression of the maximum extents of a two-dimensional object (e.g. point, line, polygon) or set of objects within its x-y coordinate system; in other words min(x), max(x), min(y), max(y).
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square.Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n, between points. [1]
The Hammersley sofa has area 2.2074 but is not the largest solution Gerver's sofa of area 2.2195 with 18 curve sections A telephone handset, a closer match than a sofa to Gerver's shape A lower bound on the sofa constant can be proven by finding a specific shape of a high area and a path for moving it through the corner.
In computational geometry, a maximum disjoint set (MDS) is a largest set of non-overlapping geometric shapes selected from a given set of candidate shapes.. Every set of non-overlapping shapes is an independent set in the intersection graph of the shapes.
Example of a projected area from a hardness indentation. Projected area is the two dimensional area measurement of a three-dimensional object by projecting its shape on to an arbitrary plane.