Search results
Results from the WOW.Com Content Network
In 1936 Joel Henry Hildebrand suggested the square root of the cohesive energy density as a numerical value indicating solvency behavior. [1] This later became known as the "Hildebrand solubility parameter". Materials with similar solubility parameters will be able to interact with each other, resulting in solvation, miscibility or swelling.
The Hildebrand parameter for such non-polar solvents is usually close to the Hansen value. A typical example showing why Hildebrand parameters can be unhelpful is that two solvents, butanol and nitroethane, which have the same Hildebrand parameter, are each incapable of dissolving typical epoxy polymers. Yet a 50:50 mix gives a good solvency ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Solubility parameter may refer to parameters of solubility: Hildebrand solubility parameter, a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility; Hansen solubility parameters, developed by Charles Hansen as a way of predicting if one material will dissolve in another and form a solution
Since liquid water flows, ocean waters cycle and flow in currents around the world. Since water easily changes phase, it can be carried into the atmosphere as water vapour or frozen as an iceberg. It can then precipitate or melt to become liquid water again. All marine life is immersed in water, the matrix and womb of life itself. [7]
Hansen shows great respect for Hildebrand and his work and indeed acknowledges that his work of the Hansen solubility parameter would not have been possible without the great contribution that Hildebrand made to this field. Hildebrand was also outspoken on the manner in which small non-polar species exist in water.
In addition to over 130 published papers and 8 patents (h-index 25), he authored Hansen Solubility Parameters – A User's Handbook in 1999 followed by an expanded 2nd Edition in 2007. [6] With Abbott and Yamamoto he authored the package of software, eBook, and datasets called Hansen Solubility Parameters in Practice, in 2008 which is currently ...
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise. The substances are listed in alphabetical order.