Search results
Results from the WOW.Com Content Network
The goal of defining and measuring this type of coupling is to provide a run-time evaluation of a software system. It has been argued that static coupling metrics lose precision when dealing with an intensive use of dynamic binding or inheritance. [8] In the attempt to solve this issue, dynamic coupling measures have been taken into account.
In computer science, type conversion, [1] [2] type casting, [1] [3] type coercion, [3] and type juggling [4] [5] are different ways of changing an expression from one data type to another. An example would be the conversion of an integer value into a floating point value or its textual representation as a string, and vice versa.
[5] As another example, GCC describes this as type-punning and warns that it will break strict aliasing. Thiago Macieira discusses several problems that can arise when type-punning causes the compiler to make inappropriate optimizations. [6] There are many examples of languages that allow implicit type conversions, but in a type-safe manner.
The process of verifying and enforcing the constraints of types—type checking—may occur at compile time (a static check) or at run-time (a dynamic check). If a language specification requires its typing rules strongly, more or less allowing only those automatic type conversions that do not lose information, one can refer to the process as strongly typed; if not, as weakly typed.
In these schemes, some loss of information is accepted as dropping nonessential detail can save storage space. There is a corresponding trade-off between preserving information and reducing size. Lossy data compression schemes are designed by research on how people perceive the data in question.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...
The enclosed text becomes a string literal, which Python usually ignores (except when it is the first statement in the body of a module, class or function; see docstring). Elixir. The above trick used in Python also works in Elixir, but the compiler will throw a warning if it spots this.