enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nested sampling algorithm - Wikipedia

    en.wikipedia.org/wiki/Nested_sampling_algorithm

    Example implementations demonstrating the nested sampling algorithm are publicly available for download, written in several programming languages. Simple examples in C, R, or Python are on John Skilling's website. A Haskell port of the above simple codes is on Hackage.

  3. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Undersampling with ensemble learning. A recent study shows that the combination of Undersampling with ensemble learning can achieve better results, see IFME: information filtering by multiple examples with under-sampling in a digital library environment. [10]

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Mixed-data sampling - Wikipedia

    en.wikipedia.org/wiki/Mixed-data_sampling

    The MIDAS can also be used for machine learning time series and panel data nowcasting. [6] [7] The machine learning MIDAS regressions involve Legendre polynomials.High-dimensional mixed frequency time series regressions involve certain data structures that once taken into account should improve the performance of unrestricted estimators in small samples.

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification. [1]

  7. Gibbs sampling - Wikipedia

    en.wikipedia.org/wiki/Gibbs_sampling

    For example, imagine that a model consists of three variables A, B, and C. A simple Gibbs sampler would sample from p(A | B,C), then p(B | A,C), then p(C | A,B). A collapsed Gibbs sampler might replace the sampling step for A with a sample taken from the marginal distribution p(A | C), with variable B integrated out

  8. Reservoir sampling - Wikipedia

    en.wikipedia.org/wiki/Reservoir_sampling

    In machine learning applications, fairness is a critical consideration, especially in scenarios where data streams exhibit class imbalance. To address this, Nikoloutsopoulos, Titsias, and Koutsopoulos proposed the Kullback-Leibler Reservoir Sampling (KLRS) algorithm as a solution to the challenges of Continual Learning, where models must learn ...

  9. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...