enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In mathematics, the additive inverse of an element x, denoted -x, [1] is the element that when added to x, yields the additive identity, 0 (zero). [2] In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element .

  3. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

  4. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    The inverse or multiplicative inverse (for avoiding confusion with additive inverses) of a unit x is denoted , or, when the multiplication is commutative, . The additive identity 0 is never a unit, except when the ring is the zero ring, which has 0 as its unique element.

  5. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    An identity with respect to addition is called an additive identity (often denoted as 0) and an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). [3] These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary.

  6. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Additive and multiplicative identity: there exist two distinct elements 0 and 1 in F such that a + 0 = a and a ⋅ 1 = a. Additive inverses: for every a in F, there exists an element in F, denoted −a, called the additive inverse of a, such that a + (−a) = 0.

  7. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The additive identity is unique. The additive inverse of each element is unique. The multiplicative identity is unique. For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x.

  8. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The group axioms for identity and inverses may be "weakened" to assert only the existence of a left identity and left inverses. From these one-sided axioms, one can prove that the left identity is also a right identity and a left inverse is also a right inverse for the same element. Since they define exactly the same structures as groups ...

  9. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.