Search results
Results from the WOW.Com Content Network
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
A multiset may be formally defined as an ordered pair (A, m) where A is the underlying set of the multiset, formed from its distinct elements, and : + is a function from A to the set of positive integers, giving the multiplicity – that is, the number of occurrences – of the element a in the multiset as the number m(a).
The Linda model provides a distributed shared memory, known as a tuple space because its basic addressable unit is a tuple, an ordered sequence of typed data objects; specifically in Linda, a tuple is a sequence of up to 16 typed fields enclosed in parentheses".
For example, the expression a < b < c tests whether a is less than b and b is less than c. [126] C-derived languages interpret this expression differently: in C, the expression would first evaluate a < b, resulting in 0 or 1, and that result would then be compared with c. [127] Python uses arbitrary-precision arithmetic for all
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation ( set comprehension ) as distinct from the use of map and filter functions.
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n.In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete.