enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    In the walls of buildings the above formula can be used to derive the formula commonly used to calculate the heat through building components. Architects and engineers call the resulting values either the U-Value or the R-Value of a construction assembly like a wall.

  3. Thermal transmittance - Wikipedia

    en.wikipedia.org/wiki/Thermal_transmittance

    Thermal transmittance is the rate of transfer of heat through matter. The thermal transmittance of a material (such as insulation or concrete) or an assembly (such as a wall or window) is expressed as a U-value. The thermal insulance of a structure is the reciprocal of its thermal transmittance.

  4. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature ...

  5. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    This equation shows that the temperature decreases exponentially over time, with the rate governed by the properties of the material and the heat transfer coefficient. [7] The heat transfer coefficient, h, is measured in , and represents the transfer of heat at an interface between two materials. This value is different at every interface and ...

  6. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    ˙ is the rate of heat transfer out of the body (SI unit: watt), ˙ = is the heat transfer coefficient (assumed independent of T and averaged over the surface) (SI unit: W/(m 2 ⋅K)), is the heat transfer surface area (SI unit: m 2),

  7. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]

  8. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The heat transfer rate can be written using Newton's law of cooling as = (), where h is the heat transfer coefficient and A is the heat transfer surface area. Because heat transfer at the surface is by conduction, the same quantity can be expressed in terms of the thermal conductivity k:

  9. Stanton number - Wikipedia

    en.wikipedia.org/wiki/Stanton_number

    The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.