enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.

  3. Golden angle - Wikipedia

    en.wikipedia.org/wiki/Golden_angle

    The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...

  4. Golden spiral - Wikipedia

    en.wikipedia.org/wiki/Golden_spiral

    Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.

  5. Logarithmic spiral - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_spiral

    The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers .

  6. Squaring the circle - Wikipedia

    en.wikipedia.org/wiki/Squaring_the_circle

    Squaring the circle is a problem in geometry first proposed in Greek mathematics. ... Constructions using the golden ratio. Hobson's golden ratio construction.

  7. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  8. Is the Golden Ratio the Missing Piece in Your Financial Plan?

    www.aol.com/using-golden-ratio-finance-203347825...

    The golden ratio budget echoes the more widely known 50-30-20 budget that recommends spending 50% of your income on needs, 30% on wants and 20% on savings and debt. The “needs” category covers ...

  9. File:Circle golden ratio.svg - Wikipedia

    en.wikipedia.org/wiki/File:Circle_golden_ratio.svg

    English: Circle divided in the golden ratio. The angle of B is exactly 222.49°, so the ratio of the areas B/A is about the same as the golden ratio. Date: 12 July 2008: