Search results
Results from the WOW.Com Content Network
The work per unit of charge is defined as the movement of negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force.
Alternatively, the electric potential energy of any given charge or system of charges is termed as the total work done by an external agent in bringing the charge or the system of charges from infinity to the present configuration without undergoing any acceleration.
The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = If the force is variable, then work is given by the line integral:
More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation.
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
The electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (i.e., the work done against the field around a closed path is zero, see Kirchhoff's voltage law, which is valid, as long as the circuit elements remain at rest and radiation is ignored [22]). That ...
For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.
[4]: p.711–713 If, while it is close to the positive charge, the above object is momentarily connected through a conductive path to electrical ground, which is a large reservoir of both positive and negative charges, some of the negative charges in the ground will flow into the object, under the attraction of the nearby positive charge. When ...